A Quantitative Study of the Hog1 MAPK Response to Fluctuating Osmotic Stress in Saccharomyces cerevisiae
نویسندگان
چکیده
BACKGROUND Yeast cells live in a highly fluctuating environment with respect to temperature, nutrients, and especially osmolarity. The Hog1 mitogen-activated protein kinase (MAPK) pathway is crucial for the adaption of yeast cells to external osmotic changes. METHODOLOGY/PRINCIPAL FINDINGS To better understand the osmo-adaption mechanism in the budding yeast Saccharomyces cerevisiae, we have developed a mathematical model and quantitatively investigated the Hog1 response to osmotic stress. The model agrees well with various experimental data for the Hog1 response to different types of osmotic changes. Kinetic analyses of the model indicate that budding yeast cells have evolved to protect themselves economically: while they show almost no response to fast pulse-like changes of osmolarity, they respond periodically and are well-adapted to osmotic changes with a certain frequency. To quantify the signal transduction efficiency of the osmo-adaption network, we introduced a measure of the signal response gain, which is defined as the ratio of output change integral to input (signal) change integral. Model simulations indicate that the Hog1 response gain shows bell-shaped response curves with respect to the duration of a single osmotic pulse and to the frequency of periodic square osmotic pulses, while for up-staircase (ramp) osmotic changes, the gain depends on the slope. CONCLUSIONS/SIGNIFICANCE The model analyses suggest that budding yeast cells have selectively evolved to be optimized to some specific types of osmotic changes. In addition, our work implies that the signaling output can be dynamically controlled by fine-tuning the signal input profiles.
منابع مشابه
Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae.
Hyperosmotic stress yields reprogramming of gene expression in Saccharomyces cerevisiae cells. Most of this response is orchestrated by Hog1, a stress-activated, mitogen-activated protein kinase (MAPK) homologous to human p38. We investigated, on a genomic scale, the contribution of changes in transcription rates and mRNA stabilities to the modulation of mRNA amounts during the response to osmo...
متن کاملThe Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae.
We have studied hypoxic induction of transcription by studying the seripauperin (PAU) genes of Saccharomyces cerevisiae. Previous studies showed that PAU induction requires the depletion of heme and is dependent upon the transcription factor Upc2. We have now identified additional factors required for PAU induction during hypoxia, including Hog1, a mitogen-activated protein kinase (MAPK) whose ...
متن کاملOsmolarity hypersensitivity of hog1 deleted mutants is suppressed by mutation in KSS1 in budding yeast Saccharomyces cerevisiae.
An osmosensing mechanism of Saccharomyces cerevisiae involves a mitogen-activated protein kinase (MAPK) cascade (HOG pathway). This study aimed to investigate the response of the yeast to osmotic stress. A mutant strain, in which the HOG1 gene was disrupted by TRP1, was constructed. A spontaneous mutant, named YJY45, which suppresses the osmosensitive growth phenotype of the hog1 deletion mutan...
متن کاملDelayed Turnover of Unphosphorylated Ssk1 during Carbon Stress Activates the Yeast Hog1 Map Kinase Pathway
In Saccharomyces cerevisiae, the Hog1 mitogen-activated protein kinase (MAPK) pathway coordinates the adaptation to osmotic stress and was recently reported to respond to acute changes in glucose levels. Similarly as in osmotic stress, glucose starvation leads to a transient accumulation of Hog1 in the nucleus. However, the kinetics and the mechanism of Hog1 activation are different for these s...
متن کاملTargeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase.
Exposure of Saccharomyces cerevisiae to increases in extracellular osmolarity activates the stress-activated Hog1 mitogen-activated protein kinase (MAPK), which is essential for cell survival upon osmotic stress. Yeast cells respond to osmotic stress by inducing the expression of a very large number of genes, and the Hog1 MAPK plays a critical role in gene transcription upon stress. To understa...
متن کامل